Copied to
clipboard

G = D56⋊C22order 448 = 26·7

3rd semidirect product of D56 and C22 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q164D14, SD166D14, D563C22, C56.5C23, C28.24C24, M4(2)⋊12D14, D28.17C23, Dic14.17C23, C8⋊D143C2, D56⋊C23C2, D4⋊D77C22, (C2×Q8)⋊23D14, (C4×D7).45D4, C4.192(D4×D7), (C8×D7)⋊5C22, C7⋊C8.12C23, Q8⋊D76C22, C8.C226D7, Q8.D141C2, C8.5(C22×D7), Q16⋊D72C2, C4○D4.30D14, D14.55(C2×D4), C28.245(C2×D4), (D4×D7)⋊10C22, C56⋊C26C22, C8⋊D76C22, (D7×M4(2))⋊4C2, D4⋊D1410C2, (C7×Q16)⋊2C22, (Q8×D7)⋊12C22, C7⋊Q165C22, C22.49(D4×D7), C4.24(C23×D7), SD163D73C2, (C2×D28)⋊37C22, C74(D8⋊C22), Dic7.62(C2×D4), (Q8×C14)⋊21C22, (C7×SD16)⋊6C22, (C22×D7).44D4, (C7×D4).17C23, (C4×D7).31C23, D4.17(C22×D7), (C7×Q8).17C23, Q8.17(C22×D7), C28.C2310C2, D42D711C22, (C2×C28).115C23, (C2×Dic7).196D4, Q82D711C22, C4○D28.31C22, C14.125(C22×D4), (C7×M4(2))⋊6C22, C4.Dic715C22, C2.98(C2×D4×D7), (D7×C4○D4)⋊5C2, (C2×C14).70(C2×D4), (C7×C8.C22)⋊2C2, (C2×Q82D7)⋊17C2, (C2×C4×D7).163C22, (C2×C4).99(C22×D7), (C7×C4○D4).26C22, SmallGroup(448,1230)

Series: Derived Chief Lower central Upper central

C1C28 — D56⋊C22
C1C7C14C28C4×D7C2×C4×D7D7×C4○D4 — D56⋊C22
C7C14C28 — D56⋊C22
C1C2C2×C4C8.C22

Generators and relations for D56⋊C22
 G = < a,b,c,d | a56=b2=c2=d2=1, bab=a-1, cac=a29, dad=a13, cbc=a28b, dbd=a40b, cd=dc >

Subgroups: 1356 in 262 conjugacy classes, 99 normal (51 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C23, D7, C14, C14, C2×C8, M4(2), M4(2), D8, SD16, SD16, Q16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×M4(2), C4○D8, C8⋊C22, C8.C22, C8.C22, C2×C4○D4, C7⋊C8, C56, Dic14, Dic14, C4×D7, C4×D7, D28, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C7×Q8, C22×D7, C22×D7, D8⋊C22, C8×D7, C8⋊D7, C56⋊C2, D56, C4.Dic7, D4⋊D7, Q8⋊D7, C7⋊Q16, C7×M4(2), C7×SD16, C7×Q16, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, C4○D28, C4○D28, D4×D7, D4×D7, D42D7, D42D7, Q8×D7, Q82D7, Q82D7, Q82D7, Q8×C14, C7×C4○D4, D7×M4(2), C8⋊D14, D56⋊C2, SD163D7, Q16⋊D7, Q8.D14, C28.C23, D4⋊D14, C7×C8.C22, C2×Q82D7, D7×C4○D4, D56⋊C22
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C22×D7, D8⋊C22, D4×D7, C23×D7, C2×D4×D7, D56⋊C22

Smallest permutation representation of D56⋊C22
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 56)(2 55)(3 54)(4 53)(5 52)(6 51)(7 50)(8 49)(9 48)(10 47)(11 46)(12 45)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(57 84)(58 83)(59 82)(60 81)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)(85 112)(86 111)(87 110)(88 109)(89 108)(90 107)(91 106)(92 105)(93 104)(94 103)(95 102)(96 101)(97 100)(98 99)
(2 30)(4 32)(6 34)(8 36)(10 38)(12 40)(14 42)(16 44)(18 46)(20 48)(22 50)(24 52)(26 54)(28 56)(58 86)(60 88)(62 90)(64 92)(66 94)(68 96)(70 98)(72 100)(74 102)(76 104)(78 106)(80 108)(82 110)(84 112)
(1 85)(2 98)(3 111)(4 68)(5 81)(6 94)(7 107)(8 64)(9 77)(10 90)(11 103)(12 60)(13 73)(14 86)(15 99)(16 112)(17 69)(18 82)(19 95)(20 108)(21 65)(22 78)(23 91)(24 104)(25 61)(26 74)(27 87)(28 100)(29 57)(30 70)(31 83)(32 96)(33 109)(34 66)(35 79)(36 92)(37 105)(38 62)(39 75)(40 88)(41 101)(42 58)(43 71)(44 84)(45 97)(46 110)(47 67)(48 80)(49 93)(50 106)(51 63)(52 76)(53 89)(54 102)(55 59)(56 72)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(57,84)(58,83)(59,82)(60,81)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(85,112)(86,111)(87,110)(88,109)(89,108)(90,107)(91,106)(92,105)(93,104)(94,103)(95,102)(96,101)(97,100)(98,99), (2,30)(4,32)(6,34)(8,36)(10,38)(12,40)(14,42)(16,44)(18,46)(20,48)(22,50)(24,52)(26,54)(28,56)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112), (1,85)(2,98)(3,111)(4,68)(5,81)(6,94)(7,107)(8,64)(9,77)(10,90)(11,103)(12,60)(13,73)(14,86)(15,99)(16,112)(17,69)(18,82)(19,95)(20,108)(21,65)(22,78)(23,91)(24,104)(25,61)(26,74)(27,87)(28,100)(29,57)(30,70)(31,83)(32,96)(33,109)(34,66)(35,79)(36,92)(37,105)(38,62)(39,75)(40,88)(41,101)(42,58)(43,71)(44,84)(45,97)(46,110)(47,67)(48,80)(49,93)(50,106)(51,63)(52,76)(53,89)(54,102)(55,59)(56,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(57,84)(58,83)(59,82)(60,81)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(85,112)(86,111)(87,110)(88,109)(89,108)(90,107)(91,106)(92,105)(93,104)(94,103)(95,102)(96,101)(97,100)(98,99), (2,30)(4,32)(6,34)(8,36)(10,38)(12,40)(14,42)(16,44)(18,46)(20,48)(22,50)(24,52)(26,54)(28,56)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112), (1,85)(2,98)(3,111)(4,68)(5,81)(6,94)(7,107)(8,64)(9,77)(10,90)(11,103)(12,60)(13,73)(14,86)(15,99)(16,112)(17,69)(18,82)(19,95)(20,108)(21,65)(22,78)(23,91)(24,104)(25,61)(26,74)(27,87)(28,100)(29,57)(30,70)(31,83)(32,96)(33,109)(34,66)(35,79)(36,92)(37,105)(38,62)(39,75)(40,88)(41,101)(42,58)(43,71)(44,84)(45,97)(46,110)(47,67)(48,80)(49,93)(50,106)(51,63)(52,76)(53,89)(54,102)(55,59)(56,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,56),(2,55),(3,54),(4,53),(5,52),(6,51),(7,50),(8,49),(9,48),(10,47),(11,46),(12,45),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(57,84),(58,83),(59,82),(60,81),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71),(85,112),(86,111),(87,110),(88,109),(89,108),(90,107),(91,106),(92,105),(93,104),(94,103),(95,102),(96,101),(97,100),(98,99)], [(2,30),(4,32),(6,34),(8,36),(10,38),(12,40),(14,42),(16,44),(18,46),(20,48),(22,50),(24,52),(26,54),(28,56),(58,86),(60,88),(62,90),(64,92),(66,94),(68,96),(70,98),(72,100),(74,102),(76,104),(78,106),(80,108),(82,110),(84,112)], [(1,85),(2,98),(3,111),(4,68),(5,81),(6,94),(7,107),(8,64),(9,77),(10,90),(11,103),(12,60),(13,73),(14,86),(15,99),(16,112),(17,69),(18,82),(19,95),(20,108),(21,65),(22,78),(23,91),(24,104),(25,61),(26,74),(27,87),(28,100),(29,57),(30,70),(31,83),(32,96),(33,109),(34,66),(35,79),(36,92),(37,105),(38,62),(39,75),(40,88),(41,101),(42,58),(43,71),(44,84),(45,97),(46,110),(47,67),(48,80),(49,93),(50,106),(51,63),(52,76),(53,89),(54,102),(55,59),(56,72)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I7A7B7C8A8B8C8D14A14B14C14D14E14F14G14H14I28A···28F28G···28O56A···56F
order122222222444444444777888814141414141414141428···2828···2856···56
size11241414282828224447714282224428282224448884···48···88···8

55 irreducible representations

dim1111111111112222222224448
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D8⋊C22D4×D7D4×D7D56⋊C22
kernelD56⋊C22D7×M4(2)C8⋊D14D56⋊C2SD163D7Q16⋊D7Q8.D14C28.C23D4⋊D14C7×C8.C22C2×Q82D7D7×C4○D4C4×D7C2×Dic7C22×D7C8.C22M4(2)SD16Q16C2×Q8C4○D4C7C4C22C1
# reps1112222111112113366332333

Matrix representation of D56⋊C22 in GL8(𝔽113)

3659110650000
224927230000
722965540000
626141760000
000015106983
00000100025
00000879850
00001561013
,
9895110100000
153427930000
505565160000
1106241290000
000015106983
0000881009825
0000049850
00002616013
,
10000000
01000000
00100000
00010000
00001000
00000100
00007201120
000001050112
,
147522580000
825191480000
9510119620000
1029051290000
0000151800
0000889800
000001091563
000020998

G:=sub<GL(8,GF(113))| [36,22,72,62,0,0,0,0,59,49,29,61,0,0,0,0,110,27,65,41,0,0,0,0,65,23,54,76,0,0,0,0,0,0,0,0,15,0,0,15,0,0,0,0,106,100,87,61,0,0,0,0,9,0,98,0,0,0,0,0,83,25,50,13],[98,15,50,110,0,0,0,0,95,34,55,62,0,0,0,0,110,27,65,41,0,0,0,0,10,93,16,29,0,0,0,0,0,0,0,0,15,88,0,2,0,0,0,0,106,100,4,61,0,0,0,0,9,98,98,60,0,0,0,0,83,25,50,13],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,1,0,105,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112],[14,82,95,102,0,0,0,0,75,51,101,90,0,0,0,0,22,91,19,51,0,0,0,0,58,48,62,29,0,0,0,0,0,0,0,0,15,88,0,2,0,0,0,0,18,98,109,0,0,0,0,0,0,0,15,9,0,0,0,0,0,0,63,98] >;

D56⋊C22 in GAP, Magma, Sage, TeX

D_{56}\rtimes C_2^2
% in TeX

G:=Group("D56:C2^2");
// GroupNames label

G:=SmallGroup(448,1230);
// by ID

G=gap.SmallGroup(448,1230);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,387,1123,185,136,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^56=b^2=c^2=d^2=1,b*a*b=a^-1,c*a*c=a^29,d*a*d=a^13,c*b*c=a^28*b,d*b*d=a^40*b,c*d=d*c>;
// generators/relations

׿
×
𝔽